If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+88x-540=0
a = 1; b = 88; c = -540;
Δ = b2-4ac
Δ = 882-4·1·(-540)
Δ = 9904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9904}=\sqrt{16*619}=\sqrt{16}*\sqrt{619}=4\sqrt{619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-4\sqrt{619}}{2*1}=\frac{-88-4\sqrt{619}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+4\sqrt{619}}{2*1}=\frac{-88+4\sqrt{619}}{2} $
| 7x+7=8x-16= | | 8a=5a | | f²+3f-130=0 | | 5(3x-11)=2 | | 4(4x+3)=20x+11-4x+1 | | 16y2+20y=0 | | -3y+10=26 | | 3-6(4c-9)=4c-3 | | -6(x-3)+2=-4(x-5) | | 5^x=25x | | 6(x-5)-4=32x-112 | | -2(x+3)+52=21+19 | | X2+8x-80=0 | | 8^(-7x)=9 | | -32=2(x+9) | | 2.7x-0.82=x-2.52 | | 8+4=9-9(x+4)+8x | | 3+9x=8x+7 | | 1-5(n-10)=12(n-4)-8n | | 2x+10=50/3 | | 2x+9=10;x= | | -6m+8=10 | | 2x•x=18 | | 1.12x=6272 | | 5(3x-2)^2+8=43 | | -9/4=x/8 | | 1.4x^2=315 | | 5x+-x-8=12 | | 3+x+13=-(x+2) | | 1-5x+7=8x-5 | | -3m=m2 | | 18(x+8)+3-17x=15 |